Lista 2

Álgebra Linear Avançada II

Aplicações Multilineares e Tensores

 ${f 1}$ — Verifique a multilinearidade das aplicações abaixo.

a) Dados n, m inteiros positivos. Então a multiplicação de polinomios:

$$*: \mathfrak{P}_n(\mathbb{K}) \times \mathfrak{P}_m(\mathbb{K}) \to \mathfrak{P}_{n+m}(\mathbb{K})$$

é uma aplicação bilinear.

b) A aplicação $\Box: \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ dada por $\Box((x_1, x_2), (y_1, y_2), (z_1, z_2)) = x_1 y_1 z_1 + x_2 y_2 z_2$ é uma aplicação trilinear.

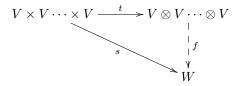
- c) A aplicação $\mathbf{A}: \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^3$ $\mathbf{A}((x_1, x_2), (y_1, y_2), (z_1, z_2)) =$ $(x_1y_1z_2, 2x_1y_2z_1, 3x_2y_1z_1)$ é uma aplicação trilinear.
- d) Dado uma aplicação multilinear $\varphi: V_1 \times \ldots \times V_n \to W_1$ e uma transformação linear $T: W_1 \to W_2$, então $T\varphi: V_1 \times \ldots \times V_n \to W_2$ é uma aplicação multilinear.
- e) Dado V espaço vetorial e V^* seu dual e sejam $f_1, \ldots f_n \in V^*$ então a aplicação:

$$\Diamond: V^n \to \mathbb{K}$$

$$\diamondsuit(v_1,\ldots v_n)=f_1(v_1)\cdots f_n(v_n)$$

é multilinear.

2 — Seguindo o esquema abaixo em que V e W são espaços vetoriais e s uma aplicação multilinear, explicite $f \circ t$ em cada considerando s a função trilinear definida no exercício 1b e 1c.



3 — Seja \mathcal{M} , conjunto de todas as funções de suporte finito* que levam $V_1 \times V_2 \times \cdots \times V_p$ em \mathbb{K} *Funções de Suporte Finito são aquelas em que apenas um conjunto finito de pontos do domínio tem imagem não nula

- a) Mostre que \mathcal{M} é um espaço vetorial com soma e produto escalar usuais.
- b) Exiba uma base para M.

4 — Defina \mathcal{M}_0 o Espaço Vetorial gerado por funções em \mathcal{M} do tipo: $f(u_1, \cdots, v_j + u_j, \cdots, u_p) - f(u_1, \cdots, u_j, \cdots, u_p) - f(u_1, \cdots, u_j, \cdots, u_p),$ $f(u_1, \cdots, u_j, \cdots, u_p) - af(u_1, \cdots, u_j, \cdots, u_p)$

a) Verifique que se $h \in \mathcal{M}/\mathcal{M}_0$ então h é linear.

5 — Prove que $V \otimes K \simeq V$ das seguintes formas: a)Achando bases de ambos os espaços.

- b)Exibindo um isomorfismo natural (sem base)
- c) Usando a formula $\dim(A \otimes B) = \dim A \dim B$

6 — Prove que $V \otimes W \simeq W \otimes V$ das seguintes formas:

- a) Achando bases de ambos os espaços.
- b)Exibindo um isomorfismo natural (sem base)
- c) Usando a formula $\dim(A \otimes B) = \dim A \dim B$

7 — Prove que nem todos os vetores em $V \otimes V$, para dim $V \geqslant 2$ são da forma $u \otimes v$.

8 — Prove que o conjunto das aplicações multilineares de $V_1 \times \cdots \times V_n$ em W é isomorfo ao conjunto das aplicações lineares de $V_1 \otimes \cdots \otimes V_n$ em W.

9 — Dado

$$S = \frac{1}{q!} \sum_{\sigma \in S_{\sigma}} \lambda_{\sigma}(f) : T^{q}(L) \to T^{q}(L)$$

Mostre que:

a)S(f) é um tensor simétrico, ou seja, para qualquer $\sigma \in S_q$, $\lambda_{\sigma}(f) = f$.

b) S é um operador idempotente, ou seja, $S^2=S$

c) Se f é um tensor antisimétrico então calcule S(f).

10 — Use o item anterior para calcular a dimensão de $S^q(L)$, o conjunto dos q-tensores simétricos.

11 — Dado

$$A(f) = \frac{1}{q!} \sum_{\sigma \in S_q} \operatorname{sinal}(\sigma) \lambda_{\sigma}(f) : T^q(L) \to T^q(L)$$

Mostre que:

- a)A(f) é um tensor anti-simétrico, ou seja para qualquer $\sigma \in S_q$, $\lambda_{\sigma}(f) = \operatorname{sinal}(\sigma)f$.
- b)A é um operador idempotente, ou seja, $A^2 = A$
- c)Se f é um tensor simétrico então calcule A(f).
- d)Conclua que im $A = \Lambda^q(V)$

12 — Seja $\Lambda^q(V)$, o o conjunto dos q-tensores antissimétricos sobre V.

- a) Mostre que se $q > \dim(V)$ então todos os tensores antissimétricos em $\Lambda^q(V)$ são nulos.
- b) Calcule a dimensão de $\Lambda^q(L)$, o conjunto dos q-tensores antissimétricos.
- c) Calcule a dimensão de $\Lambda(L) = \bigoplus_{q=0}^{n} \Lambda^{q}(L)$.