Calculadora Binária:

Bases Numéricas:

Quando escrevemos um número qualquer, o fazemos, cotidianamente, utilizando a base decimal. A razão para este fato é um tanto quanto simples, temos dez dedos nas mãos. Desta forma, o número 123 se escreve como

$$123 = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0.$$

Se escolhêssemos a base 8, por exemplo, o mesmo número seria representado por

$$(173)_8 = 1 \times 8^2 + 7 \times 8^1 + 3 \times 8^0,$$

em geral, um número inteiro escrito em uma base arbitrária $b \geq 2$ terá a forma¹

$$(xyzw)_b = x \times b^3 + y \times b^2 + z \times b^1 + w \times b^0,$$

onde os algarismos x, y, z e w são números naturais entre 0 e b-1.

Na base binária, b = 2, os algarismos pode ser apenas 0 ou 1. O número 123, nesta base, seria escrito como $(1111011)_2$, verifique.

Base Binária - Lógica

Como mostramos, um número escrito na base binária será composto por uma sequência de 0 e 1. Não é difícil perceber que é possível fazer uma relação direta identificando 0 com Falso e 1 com Verdadeiro. A ideia, portanto, é tentar, a partir de conectivos lógicos, realizar operações aritméticas com números escritos em uma base binária.

Vamos definir o conectivo **ou exclusivo**, simbolizado por ⊻. Se fôssemos construir uma

 $^{^1}$ Note que os números não inteiros podem ser continuados com termos depois da vírgula multiplicando $b^{-1},\,b^{-2},\,{\rm etc.}$

sentença em português com ou exclusivo, poderíamos pensar em algo como: Suponha que a final do campeonato paulista seja entre Corinthians e o risível time do Palmeiras. Podese dizer "Corinthians ou Palmeiras será campeão paulista". Esse 'ou' poderia ser pensado como 'ou exclusivo' já que apenas um deles pode ser campeão. Portanto, a proposição precisa se escreveria como 'Corinthians \veebar Palmeiras será campeão paulista'.

A Tabela Verdade para tal conectivo se escreveria como (identificando V=1, F=0).

p	q	$p \veebar q$	
1	1	0	. Verifique que $p \veebar q = (p \lor q) \land (\neg p \lor \neg q)$.
1	0	1	
0	1	1	
0	0	0	

Agora, voltemos à base binária e façamos soma entre dois números escritos na base 2 de apenas um algarismo (manterei o 0 à esquerda quando for o caso por razões didáticas):

$$0+0 = 00,$$
 $1+0 = 01,$
 $0+1 = 01,$
 $1+1 = 10.$ (1)

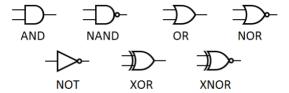
Notem que, se associarmos 0=F e 1=V e se identificarmos as parcelas da soma às proposições a e b respectivamente, o algarismo da direita será o valor de verdade da sentença $a \vee b$ enquanto que o algarismo da direita será o valor de $a \wedge b$ (confiram).

A calculadora.

A grande vantagem de se tratar com bases binárias, é a imensa possibilidade de contruções físicas nas quais os algarismos 0 ou 1 podem ser representados como interruptores que

acendem/apagam lâmpadas, portas abertas/fechadas, presença/ausência de sinais, etc. Utilizaremos, a partir de então, a representação padrão de portas lógicas em circuitos eletrônicos a fim de construir estruturas fundamentais de uma calculadora binária. De maneira simplificada, a presença de sinal (em geral corrente elétrica a partir de um valor mínimo) em uma determinado ponto do circuito é representada por 1 e a ausência por 0 e cada porta lógica é um componente eletrônico que funciona como um conectivo lógico associado.

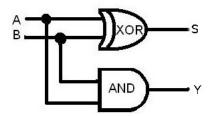
Abaixo, representação padrão das portas lógicas usuais



da lista acima, utilizaremos a porta OR (\lor) a porta AND (\land) e a porta XOR (\veebar) .

Vamos, agora, computar a soma a+b exatamente como descrito em (1). Nesse caso simples, a+b=ys, sendo $a \vee b = s$ e $a \wedge b = y$.

O circuito eletrônico é representado pelo esquema ²:



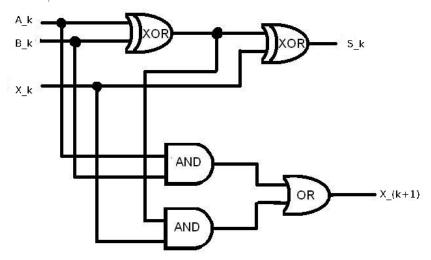
A construção acima é claramente limitada já que está restrita a apenas números binários de um algarismo, ou seja, a soma mais complicada capaz de executar seria 1+1=2. Escrevamos, na base binária, como se somam os números 10111+01110.

²Figura adaptada de: http://www.instructables.com/id/4-Bit-Binary-Adder-Mini-Calculator/

Na soma acima, cada algarismo será representado por uma letra correspondente à sua linha (X, A, B ou S) indexada por um número, $1, \dots, 6$ correspondente à coluna. Por exemplo, observando os algarismos em negrito temos $A_2 = 1$ e $S_4 = 0$. A ideia é construir a estrutura fundamental de uma calculadora binária que corresponde a operação de uma coluna na soma acima. Naturalmente, as entradas seriam os algarismos na posição k das parcelas A e B além do número que eventualmente veio da coluna anterior (o popular vai 1), representado pela letra X. As saídas seriam o algarismo da soma na mesma coluna, representada pela letra S e o eventual algarismo a ser somado na próxima coluna. Indexando cada um dos algarismos, teríamos as entradas A_k , B_k e X_k e as saídas S_k e X_{k+1} .

O esquema que representa tal unidade fundamental nada mais é do que a extensão do simplificado apresentado anteriormente seguindo os mesmos princípios básicos.

Abaixo, sua estrutura:



O circuito acima representa as operações lógicas:

$$(A_k \vee B_k) \vee X_k = S_k$$

$$(A_k \wedge B_k) \vee [(A_k \vee B_k) \wedge X_k] = X_{k+1},$$

$$(2)$$

podemos conferir, por exemplo, a coluna 4 na soma apresentada na página anterior. Para esta, teremos as entradas $A_4 = 0, B_4 = 1, X_4 = 1$. Aplicando em (2) temos, para obter S_4 , $(0 \normalfont{}^{\normalf^{\normalfont{}^{\normalfont{}^{\normalfont{}^{\normalfont{}^{\n$

A construção de uma calculadora se faz, portanto, ligando várias unidades fundamentais como esta ordenadas de tal modo a representar cada coluna. Por exemplo, uma máquina de adição composta por 10 unidades fundamentais é capaz de somar números até o resultado máximo de $2^{11} - 1 = 2047$.

Pesquisem diversas construções para tal calculadora, as mais comuns são feitas com lâmpadas de led em circuitos acoplados mas há construções mecânicas utilizando bomba de ar e até mesmo com pequenas bolinhas. Veja esse exemplo e procure descobrir como são representados, mecanicamente, os conectivos lógicos.