Geometria diferencial I Quinta lista de exercícios

- 1. Mostre que o parabolóide $z = x^2 + y^2$ é difeomorfo a um plano.
- 2. Sejam $S \subset \mathbb{R}^3$ uma superfície regular e $d: S \to \mathbb{R}$ dada por $d(p) = \|p p_0\|$, em que $p \in S$ e $p_0 \notin S$; isto é, d é a distância de p a um ponto fixo p_0 que não está em S. Prove que d é diferenciável.
- 3. Seja $S^2=\left\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2=1\right\}$ a esfera unitária e $A:S^2\to S^2$ a aplicação antípoda $A\left(x,y,z\right)=(-x,-y,-z).$ Mostre que A é um difeomorfismo.
- 4. Considere a superfície x(u,v)=(u,v,f(u,v)), em que $f:U\subset\mathbb{R}^2\to\mathbb{R}$ é uma função diferenciável. Obtenha a aplicação normal N(u,v).
- 5. Considere o cilindro circular descrito por $x(u,v)=(a\cos u,a\sin u,v),\ (u,v)\in\mathbb{R}^2,\ a>0.$ Descreva a imagem da aplicação normal sobre a esfera unitária.
- 6. Considere a superfície $x(u,v)=(u+v,u-v,4uv), (u,v)\in\mathbb{R}^2$, e uma reparametrização dada por $y(\eta,\xi)=(\eta,\xi,\eta^2-\xi^2), (\eta,\xi)\in\mathbb{R}^2$. Verifique que, se h é a mudança de parâmetros tal que $y=x\circ h$ e $r=(\eta,\xi)$, então os coeficientes da primeira forma quadrática de y em r diferem dos coeficientes da primeira forma quadrática de x em y0. Mas observe que as primeiras formas quadráticas coincidem.
- 7. Mostre que a faixa de Moebius não é orientável.
- 8. Seja uma $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = r^2\}$ uma esfera de raio r. Mostre que a curva que minimiza a distância entre dois pontos sobre a esfera é um pedaço da circunferência de raio r.
- 9. Calcule a área do elipsóide $S = \left\{ (x,y,z) \in \mathbb{R}^3 | \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}, \, a,b,c > 0.$
- 10. Considere a superfície $x\left(u,v\right)=\left(u,v,f\left(u,v\right)\right),\,\left(u,v\right)\in\mathbb{R}^{2},\,f:\mathbb{R}^{2}\rightarrow\mathbb{R},\,f\in C^{\infty}.$
 - (a) verifique que as curvas coordenadas são ortogonais se e somente se $\frac{\partial f}{\partial u} \frac{\partial f}{\partial v} = 0$;
 - (b) se D é uma região de \mathbb{R}^{2} , prove que a área $x\left(D\right)$ é dada por $A\left(x\left(D\right)\right)=\iint\sqrt{1+\left(\frac{\partial f}{\partial u}\right)^{2}+\left(\frac{\partial f}{\partial v}\right)^{2}}dudv$ e que $A\left(x\left(D\right)\right)\geq A\left(D\right)$. Quando ocorre $A\left(x\left(D\right)\right)=A\left(D\right)$?
- 11. Sejam $x, y : U \subset \mathbb{R}^2 \to \mathbb{R}^3$, superfícies simples e $D \subset U$ uma região do plano. Prove que se x e y são isométricas então as áreas A(x(D)) = A(y(D)).

12. Considere um elipsóide triaxial dado pela equação de raios $S^2 = \left\{ (x,y,z) \in \mathbb{R}^3 : (\frac{x}{a})^2 + (\frac{y}{b})^2 + (\frac{z}{c})^2 = 1 \right\}$ a < b < c. Suponha as três elipses principais, ou seja, no plano xy, no plano yz e no plano xz sobre o elipsóide. Construa um triângulo com pontos sucessivos de intersecção e calcule seus ângulos internos.